Updated:

1. 문제 링크

https://www.acmicpc.net/problem/1978

2. 사용 알고리즘

에라토스테네스의 체

3. 풀이

에라토스테네스의 체를 이용하여 1~1000까지 소수 여부를 구한 후 소수 개수 구하기

4. 소스 코드

4-1. C++

https://github.com/dev-aiden/problem-solving/blob/main/boj/1978.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <iostream>

using namespace std;

int prime[1003];

int main(void) {
    ios_base::sync_with_stdio(false);
    prime[1] = 1;
    for (int i = 2; i <= 1000; ++i) {
        for (int j = i * i; j <= 1000; j += i) {
            prime[j] = 1;
        }
    }
    int ans = 0;
    int n; for (cin >> n; n--;) {
        int num; cin >> num;
        if (prime[num] == 0) ++ans;
    }
    cout << ans << "\n";
    return 0;
}

4-2. JAVA

https://github.com/dev-aiden/problem-solving/blob/main/boj/1978.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;

public class Main {

    static int prime[] = new int[1003];

    public static void main(String[] args) throws IOException {
        prime[1] = 1;
        for(int i = 2; i <= 1000; ++i) {
            for(int j = i * i; j <= 1000; j += i) {
                prime[j] = 1;
            }
        }
        int ans = 0;
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        int n = Integer.parseInt(br.readLine());
        StringTokenizer st = new StringTokenizer(br.readLine());
        for(int i = 0; i < n; ++i) {
            int num = Integer.parseInt(st.nextToken());
            if(prime[num] == 0) ++ans;
        }
        System.out.println(ans);
    }
}

Updated:

Leave a comment